Sasanka Ramanadham
University of Alabama at Birmingham, USA
Title: Importance of Ca2+-Independent Phosphoplipase A2b-Derived Lipids to Type 1 Diabetes Development
Biography
Biography: Sasanka Ramanadham
Abstract
Type 1 diabetes (T1D) is a consequence of pancreatic islet b-cell destr uction, due to apoptosis . Our lab is in vestigating underlying mechanisms that contribute to b-cell loss and we identified a prominent role for the group VIA Ca2+-independent phosphoplipase A2b (iPLA2b) in this process. The cytosolic iPLA2b catalyzes hydrolysis of the sn-2 sbstituent from membrane phopsholipids . The islet b-cell membranes are enriched in arachidonate-containing phospholipids and activation of iPLA2b in the b-cells leads to accumulations in arachidonic acid and its various oxidized metabolites (i.e. eicosanoids). The eicosanoids manifest different activities, some of which are proinflammatory and apoptotic and some are ant-inflammatory and anti-apoptotic. Inhibition, knockdown, or knockout of iPLA2b significantly reduces b-cell apopotosis due to ER stress or proinflammatory cytokines. Further, d uring the development of autoimmune T1D, expression and activity of iPLA2b increases and this is associated with generation of proinflammatory and apoptotic lipid signals. Consistent with this, we find that with selective inhibition of iPLA2b in the spontaneously diabetes-prone non-obese diabetic (NOD) mouse, there is a significant reduction in islet infiltration by leukocyte, preservation of b-cell mass, and a dramatic amelioration of T1D. We further find that iPLA s 2b inhibition markedly reduces immune responses. These observations provide strong evidence for contribution of iPLA2b-derived lipids to T1D development. Our on-going investigations reveal that activation of iPLA2b triggers molecular mechanisms that favor generation of pro -apoptotic/pro-inflammatory signals and these work in concert to promote T1D development. Our work was supported by the American Diabetes Association, NIH/NIDDK, and the Iacocca Family Foundation.